58 research outputs found

    Reduced Physiological Complexity in Robust Elderly Adults with the APOE ε4 Allele

    Get PDF
    BACKGROUND:It is unclear whether the loss of physiological complexity during the aging process is due to genetic variations. The APOE gene has been studied extensively in regard to its relationship with aging-associated medical illness. We hypothesize that diminished physiological complexity, as measured by heart rate variability, is influenced by polymorphisms in the APOE allele among elderly individuals. METHODOLOGY/PRINCIPAL FINDINGS:A total of 102 robust, non-demented, elderly subjects with normal functions of daily activities participated in this study (97 males and 5 females, aged 79.2+/-4.4 years, range 72-92 years). Among these individuals, the following two APOE genotypes were represented: epsilon4 non-carriers (n = 87, 85.3%) and epsilon4 carriers (n = 15, 14.7%). Multi-scale entropy (MSE), an analysis used in quantifying complexity for nonlinear time series, was employed to analyze heart-rate dynamics. Reduced physiological complexity, as measured by MSE, was significantly associated with the presence of the APOE epsilon4 allele in healthy elderly subjects, as compared to APOE epsilon4 allele non-carriers (24.6+/-5.5 versus 28.9+/-5.2, F = 9.429, p = 0.003, respectively). CONCLUSIONS/SIGNIFICANCE:This finding suggests a role for the APOE gene in the diminished physiological complexity seen in elderly populations

    Early and Late Postnatal Myocardial and Vascular Changes in a Protein Restriction Rat Model of Intrauterine Growth Restriction

    Get PDF
    Intrauterine growth restriction (IUGR) is a risk factor for cardiovascular disease in later life. Early structural and functional changes in the cardiovascular system after IUGR may contribute to its pathogenesis. We tested the hypothesis that IUGR leads to primary myocardial and vascular alterations before the onset of hypertension. A rat IUGR model of maternal protein restriction during gestation was used. Dams were fed low protein (LP; casein 8.4%) or isocaloric normal protein diet (NP; casein 17.2%). The offspring was reduced to six males per litter. Immunohistochemical and real-time PCR analyses were performed in myocardial and vascular tissue of neonates and animals at day 70 of life. In the aortas of newborn IUGR rats expression of connective tissue growth factor (CTGF) was induced 3.2-fold. At day 70 of life, the expression of collagen I was increased 5.6-fold in aortas of IUGR rats. In the hearts of neonate IUGR rats, cell proliferation was more prominent compared to controls. At day 70 the expression of osteopontin was induced 7.2-fold. A 3- to 7-fold increase in the expression of the profibrotic cytokines TGF-β and CTGF as well as of microfibrillar matrix molecules was observed. The myocardial expression and deposition of collagens was more prominent in IUGR animals compared to controls at day 70. In the low-protein diet model, IUGR leads to changes in the expression patterns of profibrotic genes and discrete structural abnormalities of vessels and hearts in adolescence, but, with the exception of CTGF, not as early as at the time of birth. Invasive and non-invasive blood pressure measurements confirmed that IUGR rats were normotensive at the time point investigated and that the changes observed occurred independently of an increased blood pressure. Hence, altered matrix composition of the vascular wall and the myocardium may predispose IUGR animals to cardiovascular disease later in life

    Complex systems and the technology of variability analysis

    Get PDF
    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients

    Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence

    Get PDF
    A major public health goal is to determine linkages between specific pollution sources and adverse health outcomes. This paper provides an integrative evaluation of the database examining effects of vehicular emissions, such as black carbon (BC), carbonaceous gasses, and ultrafine PM, on cardiovascular (CV) morbidity and mortality. Less than a decade ago, few epidemiological studies had examined effects of traffic emissions specifically on these health endpoints. In 2002, the first of many studies emerged finding significantly higher risks of CV morbidity and mortality for people living in close proximity to major roadways, vs. those living further away. Abundant epidemiological studies now link exposure to vehicular emissions, characterized in many different ways, with CV health endpoints such as cardiopulmonary and ischemic heart disease and circulatory-disease-associated mortality; incidence of coronary artery disease; acute myocardial infarction; survival after heart failure; emergency CV hospital admissions; and markers of atherosclerosis. We identify numerous in vitro, in vivo, and human panel studies elucidating mechanisms which could explain many of these cardiovascular morbidity and mortality associations. These include: oxidative stress, inflammation, lipoperoxidation and atherosclerosis, change in heart rate variability (HRV), arrhythmias, ST-segment depression, and changes in vascular function (such as brachial arterial caliber and blood pressure). Panel studies with accurate exposure information, examining effects of ambient components of vehicular emissions on susceptible human subjects, appear to confirm these mechanisms. Together, this body of evidence supports biological mechanisms which can explain the various CV epidemiological findings. Based upon these studies, the research base suggests that vehicular emissions are a major environmental cause of cardiovascular mortality and morbidity in the United States. As a means to reduce the public health consequences of such emissions, it may be desirable to promulgate a black carbon (BC) PM2.5 standard under the National Ambient Air Quality Standards, which would apply to both on and off-road diesels. Two specific critical research needs are identified. One is to continue research on health effects of vehicular emissions, gaseous as well as particulate. The second is to utilize identical or nearly identical research designs in studies using accurate exposure metrics to determine whether other major PM pollutant sources and types may also underlie the specific health effects found in this evaluation for vehicular emissions

    Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    Get PDF
    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts

    Children's and adolescents' rising animal-source food intakes in 1990-2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the worlds child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 1519 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes. (c) 2023, The Author(s)

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.814.4 million) incident T2D cases, representing 70.3% (68.871.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.027.1%)), excess refined rice and wheat intake (24.6% (22.327.2%)) and excess processed meat intake (20.3% (18.323.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.487.7%)) and Latin America and the Caribbean (81.8% (80.183.4%)); and lowest proportional burdens were in South Asia (55.4% (52.160.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally. (c) 2023, The Author(s)
    • …
    corecore